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ABSTRACT
Object abstraction supports the separation of what oper-
ations are provided by systems and components from how
the operations are implemented, and is essential in enabling
the construction of complex systems from components. Un-
fortunately, clear and modular implementations have poor
performance when expensive query operations are repeated,
while efficient implementations that incrementally maintain
these query results are much more difficult to develop and
to understand, because the code blows up significantly, and
is no longer clear or modular.

This paper describes a powerful and systematic method
that first allows the “what” of each component to be speci-
fied in a clear and modular fashion and implemented straight-
forwardly in an object-oriented language; then analyzes the
queries and updates, across object abstraction, in the straight-
forward implementation; and finally derives the sophisti-
cated and efficient “how” of each component by incremen-
tally maintaining the results of repeated expensive queries
with respect to updates to their parameters. Our implemen-
tation and experimental results for example applications in
query optimization, role-based access control, etc. demon-
strate the effectiveness and benefit of the method.

Categories and Subject Descriptors
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gramming; D.2.1 [Software Engineering]: Requirements/
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Tools and Techniques; D.2.11 [Software Engineering]:
Software Architectures; D.2.13 [Software Engineering]:
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1. INTRODUCTION

Object abstraction. One of the central concepts in com-
puter science is abstraction [20, 40, 14, 26], which provides
information encapsulation in systems and components by
separating “what” from “how” in information processing.
Abstraction is best supported as abstract data types [26],
which are fundamental in modern high-level programming
languages, including in particular object-oriented languages.
An abstract data type provides an interface for a certain set
of operations on a certain kind of data, i.e., the “what”,
shielding users from having to know how the data are rep-
resented and how the operations are implemented, i.e., the
“how”. This enables the construction of complex software
systems by assembling software components.

What users do on data can be classified as, or decomposed
into, two kinds of operations: queries and updates, where
queries (which are sometimes called observations or views)
compute results using data, and updates change data. For a
simple example, consider the LinkedList class in Java 1.4.
It has a query method size that returns the number of el-
ements in the list, 11 update methods that add or remove
elements, and several other query methods that return ele-
ments, their indices, a membership test result, etc.

How to implement the queries and updates can vary sig-
nificantly. In a straightforward implementation, each oper-
ation does its respective query or update and is clear and
modular. For example, in the LinkedList class, size would
iterate over elements in the list to count them, and each of
the 11 update methods would do exactly the specified ad-
dition or removal of elements. However, this can have poor
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performance, because queries may be repeated and many
are easily expensive. For example, size takes time linear
in the number of elements in the list, and if it occurs in a
loop, the overall performance blows up quickly. A sophisti-
cated implementation can have good performance, by stor-
ing the results of expensive queries and maintaining them
incrementally when the data are updated. For example, the
LinkedList class may maintain the result of size in a field
and simply return it when size is queried. However, this
is less clear, less modular, and more error-prone, because
each of the 11 update methods must also update this field
appropriately.

Clearly, there is a conflict between clarity and efficiency,
even for this simple LinkedList example. The situation be-
comes much worse for complex systems that may have many
queries and updates, where queries may cross components
and updates may also be spread in many components. It
poses a serious challenge to consider all the complex de-
pendencies and tradeoffs and to decide where and how to
maintain what results, and the resulting code may become
significantly more difficult to understand.

Conflict between clarity and efficiency in complex
systems. The conflict between clarity and modularity, and
thus software productivity and cost, on one side and pro-
gram efficiency on the other side manifests itself widely in
complex systems and components. We give two examples
here; additional examples are discussed in Section 6.

Many simulations model real-world objects, such as air-
craft in an air traffic control simulation or atoms in a protein
folding simulation. Queries about the states of the system
may combine the positions, orientations, speeds, and other
attributes of the objects. At the same time, attributes of
objects may change in many ways. If there are n kinds of
queries and m kinds of changes, a straightforward but inef-
ficient implementation would have n+m clear and modular
operations. A sophisticated implementation would maintain
some of the results of the n kinds of queries and have each of
the m kinds of changes also update each of the saved results,
yielding n × m kinds of updates total in the worst case.

In database systems, the basic operations on data are
clearly queries and updates, corresponding to select and
update statements, respectively, in SQL. For efficiency, query
results need to be saved as materialized views, and views
need to be updated incrementally when the underlying data
changes [9, 1]. While traditional OLTP (On-Line Transac-
tion Processing) applications support relatively simple queries,
OLAP (On-Line Analytical Processing) applications repeat-
edly answer much more expensive queries involving many
large aggregates. This poses severe challenges in the imple-
mentation of OLAP applications.

Clear and modular implementations may have performance
problems, while efficient implementations are often more
complex, less clear, and more difficult to develop. The ques-
tion is, then, does a method exist that allows us to achieve
both clarity and efficiency?

This paper. This paper describes a powerful and system-
atic method for performing incrementalization across ob-
ject abstraction that helps achieve both clarity and effi-
ciency. The method first allows the “what” of each compo-
nent to be specified in a clear and modular fashion and im-
plemented straightforwardly in an object-oriented language.
The method then analyzes the queries and updates, across

object abstraction, in the straightforward implementation,
and derives the sophisticated and efficient “how” of each
component by incrementally maintaining the results of re-
peated expensive queries with respect to updates to their
parameters.

There are currently few straightforward implementations
of computer applications, but programmers would be signif-
icantly more productive if they could write straightforward
implementations and rely on automated analysis and trans-
formations to generate sophisticated and efficient implemen-
tations.

Contributions of this paper include:

• a powerful method for transforming straightforward
expensive computations into efficient incremental com-
putations across object abstraction, and thus turning
clear and modular but inefficient implementations into
sophisticated but efficient implementations;

• a method for analyzing the parameters read and up-
dated by a computation in a language with object and
set abstractions;

• a mechanism for defining incrementalization rules and
for building a library of such rules, forming a knowl-
edge base for powerful program transformations;

• a prototype implementation with applications in query
optimization, role-based access control, etc. and with
experimental results that demonstrate the benefit of
the method.

Optimizations similar to incrementalization have been stud-
ied for various language features, e.g., [11, 22, 17, 38, 6, 45,
50, 31, 29, 30, 34, 28], but no systematic method gener-
ates incremental programs across abstraction in an object-
oriented language. At the same time, many analyses and op-
timizations have been studied for object-oriented programs,
e.g., [13, 5, 48, 15, 44, 3], but none of them achieves in-
crementalization. We build on and extend previous meth-
ods and present a systematic method for developing efficient
object-oriented programs, a method that is scalable and well
suited for incremental development.

The rest of the paper is organized as follows. Section 2
discusses the creation of object abstraction and challenges
for incrementalization across object abstraction. Sections 3
and 4 describe the analyses and transformations, respec-
tively, for incrementalization across object abstraction. Sec-
tion 5 discusses related issues. Section 6 describes applica-
tions and experiments. Section 7 discusses related work and
concludes.
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2. OBJECT ABSTRACTION

We discuss the creation of object abstraction by speci-
fying components from the users’ perspective, constructing
component operations in a clear and modular fashion using
high-level operations, and making the cost model explicit.
Such abstraction enables easier understanding, reuse, modi-
fication, enhancement, etc. of software systems and compo-
nents. We then discuss the challenges of incrementalization
across object abstraction.

Component specification. A software component cap-
tures data and operations on data that are of interest to the
users.

As a running example, consider a wireless protocol that
needs to keep, among other things, a set of signals and to
find, among other things, the set of signals whose strength
is above a certain threshold. This involves the following
components.

component: Protocol
data:

signals: set of signals
threshold: threshold for a signal to be strong
...

operations:
addSignal: add a given signal to the set of signals
findStrongSignals: return the set of signals whose

strength is above the threshold
...

component: Signal
data:

strength: strength of the signal
...

operations:
setStrength: set the strength to a given value
getStrength: return the strength
...

...

One must first specify what the data and operations are
from the users’ perspective. The specification should be
declarative, without considerations of how the data will be
represented and how the operations will be implemented.
The specification could be written in a high-level modeling
language or specification language, such as Z [47], or in a
very high-level programming language, as described below.

Clear and modular construction. Operations can be
classified as, or decomposed into, queries and updates, where
queries compute results using data but do not change data,
and updates change data. For example, in the Protocol

component, findStrongSignals is a query, and addSignal

is an update; in the Signal component, getStrength is a
query, and setStrength is an update. Each of the queries
and updates can be constructed modularly and clearly in
a straightforward fashion. Modularity here separates using
data from changing data, and thus is clearer and less error-
prone.

Figure 1 defines the language we use in this paper, to pre-
cisely present the analyses and transformations, although
the principle underlying our method is general and applies
to other languages as well. A program is a set of classes,
each of which defines a set of fields and a set of methods.
Types may be specified not only for fields but also for vari-
ables, method parameters, and return values, although we

omit those types from the grammar. We generally omit
types when they can be inferred from the program. Only
side-effect-free methods may be invoked in expressions, and
their bodies are always of the form return expr. We use
indentation to indicate scoping. We make substantial use

prog ::= class∗

class ::= class classname

(fieldname: type)∗

(methodname(varname∗) : stmt∗)∗

type ::= set(classname) | classname | int | ...

stmt ::= new classname(expr ∗)
| expr .methodname(expr ∗) | return expr

| expr .fieldname=expr

| varname=expr | if expr stmt else stmt | ...

expr ::= {expr : (varname in expr )∗| expr}
| expr .methodname(expr ∗)
| expr .fieldname

| varname | if expr expr else expr

| expr+expr | ...

classname, fieldname,methodname , varname : identifiers

Figure 1: Language.

of sets, because they are well suited for expressing queries
and updates at a very high level. Note the special type for
sets and the special expression for set comprehension. For
set comprehension {e : v1 in e1, ..., vk in ek|eb}, each vari-
able vi enumerates elements of the set value of expression
ei, and for each combination of values of v1 through vk, if
the value of Boolean expression eb is true, then the value of
expression e forms an element of the resulting set. We ab-
breviate {v : v in e|eb} as {v in e|eb}, and we omit | eb when
eb is true. We use the following notation for operations from
a set component:

new set() create and return an empty set
s.add(v) add element v to s
s.remove(v) remove element v from s
s.contains(v) return true if v is in s and false o.w.
s.any() return an arbitrary element in s
s.size() return the number of elements in s

We use type(e) to denote the type of expression e. As cus-
tomary, we distinguish between object types and primitive
types, i.e., non-object types, and use Obj to denote the set of
object types. We treat set types as object types, except that
we make the analysis more refined for sets. We use vars(e)
to denote the set of free variables in e. We use e[x 7→ e1]
to denote e but with each free occurrence of variable x in e
replaced with e1.

For the running example, the straightforward implemen-
tation in Figure 2 can be constructed. We use common
syntactic conventions in examples, e.g., signals abbreviates
this.signals in addSignal.

We make the following assumptions about straightfor-
ward, clear and modular programs. (1) Fields are initialized
at object creation time. So it is safe to access the fields any
time after an object is created. (2) Fields and sets are ac-
cessed only in the class where they are declared. So one only
needs to look for updates to a field or set inside its class. (3)
Library operations (whose code may be unavailable) come
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class Protocol
signals: set(Signal)
threshold: float
...
addSignal(signal): signals.add(signal)
findStrongSignals(): return {s in signals |

s.getStrength() > threshold}
...

class Signal
strength: float
...
setStrength(v): strength = v
getStrength(): return strength
...

...

Figure 2: Straightforward implementation.

with the information needed for the optimization (includ-
ing parameters read and written, and cost), as described in
Section 3.

Cost model. An essential feature of our method is the use
of cost analysis to identify performance problems in straight-
forward implementations. As a basis for this, costs of primi-
tive constructs in the language and operations from libraries,
together with what cost is considered expensive in the ap-
plication, should be specified explicitly. Frequencies of op-
erations directly invoked by users of the application should
also be provided if available.

In this paper, we use asymptotic running time as the main
cost model (although other cost models could equally well
be used), and we consider any operation whose cost is not
O(1) to be expensive. Expected costs of operations from the
set component, assuming hashing is used in the implementa-
tion, are given in the table below, together with the param-
eters they read and write, respectively; operation s.size()
may have a cost of O(1) or O(|s|) depending on how it is
implemented in the set component.

cost read write
new set() O(1)
s.add(v) O(1) s, s.members, v s.members
s.remove(v) O(1) s, s.members, v s.members
s.contains(v) O(1) s, s.members, v
s.any() O(1) s, s.members
s.size() O(1) or O(|s|) s, s.members

Our primary goal is to reduce the asymptotic running time
of the incrementalized program. Of course, storing results
of expensive queries takes extra space. Our secondary goal
is to reduce space by maintaining only values useful for the
optimization.

Incrementalization across object abstraction. First,
expensive queries must be identified. For the program in
Figure 2, it is easy to see that the set comprehension in
findStrongSignals is an expensive query.

Next, we must examine where to store this query result,
and where and how to update it. It is relatively easy to
decide to store the result in a field of Protocol. For up-
dates, there are more issues to consider. In particular, the
update by setStrength in Signal may affect the query re-
sult. We want to incrementally maintain the stored query
result as follows: if the strength of the signal is changed
from above threshold to below, then the signal is removed
from the query result; and if the strength is changed from

below to above, then the signal is added. However, object
abstraction makes this more difficult.

Should setStrength in Signal or some method in Protocol

take care of the update? Clearly setStrength should initi-
ate the update since it changes the signal strength. How-
ever, it can not directly access and update the query result in
Protocol or access other data that is needed for the update
but is not in Signal, whereas a method in Protocol can.
Rather than giving setStrength access to those, a method
can be defined in Protocol and called from setStrength to
perform the update. How can a Signal object get a refer-
ence to a Protocol object to call the defined method? Note
that all and only members of signals need to get such ref-
erences. So a reference to the current Protocol object (i.e.,
this) can be passed to a Signal object when the Signal

object is added to the signals field of the Protocol ob-
ject. To do this, the Signal class must define a method
for taking the reference to a Protocol object. Additionally,
since a Signal object may be added to signals of multiple
Protocol objects, a Signal object must maintain a set of
references.

Finally, cost must be considered. Under what conditions
will the transformations improve performance? In the straight-
forward implementation, each query takes O(|signals|) time
and each update takes O(1) time; after the transforma-
tions, each query takes O(1) time and each update takes
O(|protocols|) time, i.e., the number of instances of Protocol.
So there is a tradeoff. In an application that has several or
many signals but one or a few instances of Protocol, and
where the query is performed at least as frequently as the
signal strengths change, the transformed implementation is
much more efficient.

The resulting implementation for the running example is
shown in Figure 3, where + indicates an added line compared
to Figure 2, and * indicates a modified line. Clearly, this
implementation is significantly more complicated than the
implementation in Figure 2, and automated support for such
incrementalization is desired.

3. ANALYSIS

To perform incrementalization across abstraction, we need
to determine expensive computations, identify updates to
their parameters, and analyze costs and frequencies. The
first two are described in two subsections below.

Costs and frequencies are used to decide when transforma-
tions improve performance. In general, they require separate
analysis that is orthogonal to the main goal of this paper.
They are made easier by the use of very high-level constructs
like set comprehension. We use cost(op) to denote the cost
of operation op, and freq(op) to denote the frequency of op.
We extend existing automatic cost analysis [24, 35] to deal
accurately with set comprehension, as follows:

cost({e : v1 in s1, ..., vk in sk|eb}) =
(
Q

i=1..k |si|) × maxvi∈si,i=1..k(cost(eb) + cost(e))
(1)

We assume that frequency information is given; otherwise,
we may apply the transformation rules conservatively.

3.1 Determining expensive computations
There are two kinds of expensive computations: (1) a ba-

sic operation that is specified as expensive in the cost model,
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class Protocol
signals: set(Signal)
threshold: float

+ strongSignals: set(Signal)
...
addSignal(signal): signals.add(signal)

+ signal.takeProtocol(this)
+ if signal.getStrength() > threshold
+ strongSignals.add(signal)
* findStrongSignals(): return strongSignals
+ updateSignal(signal):
+ if signals.contains(signal)
+ if strongSignals.contains(signal)
+ if not signal.getStrength()>threshold
+ strongSingals.remove(signal)
+ else
+ if signal.getStrength()>threshold
+ strongSingals.add(signal)

...
class Signal
strength: float

+ protocols: set(Protocol)
...

+ takeProtocol(protocol): protocols.add(protocol)
setStrength(v):

strength = v
+ for protocol in protocols
+ protocol.updateSignal(this)

getStrength(): return strength
...

...

Figure 3: Incrementalized implementation.

such as a library operation that sorts a list, and (2) a com-
pound computation that requires repeated operations, in-
cluding a comprehension, an aggregation (e.g., the sum or
minimum of a set of numbers), an iteration, and a recur-
sion. For each expensive computation, three things must
be determined: (1) containing class and method—the class
and method where the computation appears, (2) parame-
ters read—values that the computation depends on, and (3)
cost—asymptotic running time of the computation. Note
that expensive compound computations may have expensive
subcomputations; we identify all expensive (sub)computations,
and use the results of the subcomputations as parameters
read by the supercomputation.

In the running example, in Figure 2, all basic operations
used are inexpensive. The only expensive computation is
the set comprehension:

{s in this.signals|s.getStrength() > this.threshold}

class: Protocol, method: findStrongSignals
parameters read: { this.signals,

this.signals.members,
{s.strength: s in this.signals},
this.threshold}

cost: O(|this.signals|)

(2)

where the set of parameters read is the result of the analysis
below.

The analysis computes the set read (e) of parameters possi-
bly read by an expensive computation e. To produce precise
analysis results, we represent parameters using expressions
of the form par :

par ::= ref |{par : (varname in ref )∗}
ref ::= varname |ref .fieldname

where ref allows parts of objects to be captured, and par

allows sets of parts of objects to be captured. For example,
the third parameter read in (2) represents the strength field
of elements of this.signals. To explicitly capture member
objects of a set object s, we use s.members. For example,
the second parameter read in (2) represents member objects
of the set object, while the first parameter represents the
reference to the set object. Finally, to appropriately se-
lect fields of objects, for an expression e of object type, the
analysis also computes the set valobj (e) of possible object
references, each of form ref , for the value of e, excluding
other intermediate values of e; it is a set since we allow con-
ditional expressions in the language, and references from the
branches are unioned.

Note that each parameter contains only one free variable,
as explained below; this simplifies the analysis. A reference
ref contains only one free variable, which appears on the
left end. This follows immediately from the grammar. A
parameter par contains one free variable (the grammar al-
lows parameters with multiple free variables, such as {x : x
in s, y in t}; the following argument implies that such pa-
rameters can be trivially simplified to contain one free vari-
able). To see this, note that comprehension is of form {r0 :
v1 in r1, ..., vk in rk} or {p : v1 in r1, ..., vk in rk}, where p
is a comprehension, and each ri is of form ref and has only
one free variable. The only free variable in the first form is
the free variable in r1, because each vi for i = 1..k− 1 is the
only free variable in ri+1, and vk is the only free variable
in r0. This also implies by induction that p has only one
free variable, and the only free variable in the second form
is also the free variable in r1.

Figure 4 defines read and valobj , for queries that do not
invoke recursive methods, and is explained below. Incremen-
talizing recursive functions has been studied previously [31,
29, 30]; integrating that with incrementalization of sets and
objects is outside the scope of this paper. For simplicity, the
analysis assumes that set-typed subexpressions are of form
ref ; this can always be achieved by introducing local vari-
ables or fields. For expressions of comprehension form, since
they are considered expensive computations, local variables
or fields will be introduced to store their values anyway.

For a set comprehension (read1), each si is of form ref

and captures a reference to a set object, and si.members cap-
tures references to the member objects; they are included as
parameters. Let ps be the set of parameters in the con-
dition eb or the return expression e. Comprehension no-
tation is used to describe whole or parts (as indicated in
parameter p from ps) of the elements of appropriate sets (as
indicated by vi1 in si1 , ..., vij

in sij
that are selected from

v1 in s1, ..., vk in sk). Parameters in ps whose free variable
is not any of v1, ..., vk are also included in the result.

For invocation of a user-defined method (read2), parame-
ters of the method body e are first analyzed; let ps be the set
of them. Then the analysis adds parameters of appropriate
arguments (e0 if this appears in a parameter in ps, and ei if
vi appears in a parameter in ps), instantiations of each pa-
rameter p from ps with appropriate object references, using
valobj , for arguments of object types (instantiating this to
an object reference of e0, and instantiating vi to an object
reference of ei), and parameters in ps whose free variable
is not any of this, v1, ..., vk. The definition of valobj (e) is
similar to read (e), except for two differences. First, it is not
defined for comprehensions or expressions with non-object
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read ({e : v1 in s1, ..., vk in sk| eb}) (read1)
= ∪i=1..k{si, si.members}

∪ {{p : vi1 in si1 , ..., vij
in sij

} : p ∈ ps|vars(p) = {vij
},

vars(sij
) = {vij−1

}, ..., vars(si2 ) = {vi1},
vars(si1) ∩ {v1, ..., vk} = ∅}

∪ { p ∈ ps|vars(p) ∩ {v1, ..., vk} = ∅}
where ps = read (eb)∪ read (e)

read (e0.m(e1, ..., ek)) (read2)
where m is defined by m(v1, ..., vk) : return e

= ∪ {p∈ps|vars(p)={this}}read (e0)
∪ ∪ {p∈ps|vars(p)={vi}}read (ei)
∪ ∪ {p∈ps|vars(p)={this}}{p[this 7→v] : v ∈ valobj (e0)}
∪ ∪ {p∈ps|vars(p)={vi}, type(vi)∈Obj}{p[vi 7→v] :v∈valobj (ei)}
∪ {p ∈ ps|vars(p) ∩ {this, v1, ..., vk} = ∅}
where ps = read (e)

read (e0.m(e1, ..., ek)) (read3)
where m is in library, i.e.,read (v0.m(v1, ..., vk)) is given

= same as above except that
read (e) is replaced with read (v0.m(v1, ..., vk))

read (e.f) = read (e)∪{v.f : v ∈ valobj (e)} (read4)

read (v) = {v} (read5)

read (if e1 e2 else e3) (read6)
= read (e1)∪ read (e2)∪ read (e3)

read (e1 + e2) = read (e1)∪ read (e2) (read7)

valobj (e0.m(e1, ..., ek))
where m is defined by m(v1, ..., vk) : return e,

= ∪ {p∈ps|vars(p)={this}}{p[this 7→v] : v ∈ valobj (e0)}
∪ ∪ {p∈ps|vars(p)={vi}, type(vi)∈Obj}{p[vi 7→v] :v∈valobj (ei)}
∪ {p ∈ ps|vars(p) ∩ {this, v1, ..., vk} = ∅}
where ps = valobj (e)

valobj (e0.m(e1, ..., ek))
where m is in library, i.e.,valobj (v0.m(v1, ..., vk)) is given

= same as above except that
valobj (e) is replaced with valobj (v0.m(v1, ..., vk))

valobj (e.f) = {v.f : v ∈ valobj (e)}

valobj (v) = v

valobj (if e1 e2 else e3) = valobj (e2)∪ valobj (e3)

Figure 4: Analysis of parameters read by expensive
computations.

types, because valobj is not called on them. Second, it only
returns the values of e, not other values used when comput-
ing e.

For invocation of a method from a library (read3), the def-
inition of the method is not given, but read (v0.m(v1, ..., vk))
and valobj (v0.m(v1, ..., vk)) are given. So, the analysis uses
them instead of the results of analyzing the method body.
The rest of the analysis is the same as for user-defined meth-
ods.

The parameters of a field reference e.f (read4) include the
parameters of e and the parameter v.f for each object v that
e may refer to.

Analysis rules for variable v (read5), conditional expres-
sion if e1 e2 else e3 (read6), and expression e1 +e2 (read7)

are straightforward. Analysis for other expressions of prim-
itive types are similar as for e1 + e2.

The analysis is correct in that it returns all values that
may be read by an expensive computation. It is precise
in that it can capture parts of objects, including parts of
elements of set objects, not just entire objects and sets. This
analysis produces the parameters read shown in (2).

3.2 Identifying parameter updates
All updates to each parameter of each expensive computa-

tion must be identified. To minimize coordination effort and
facilitate atomicity, we identify only updates by the primi-
tives. There are two kinds of such primitive update opera-
tions: (1) an assignment statement that writes to a field or
variable, and (2) a call to a library operation that writes to
some fields. For each update operation u, three things need
to be determined: (1) containing class and method, (2) pa-
rameters written—the fields or variables being updated, and
(3) cost, as for expensive computations discussed above.

In the running example, in Figure 2, for expensive compu-
tation (2), there is an update to its parameter
this.signals.members:

this.signals.add(signal)

class: Protocol, method: addSignal
parameters written: {this.signals.members}
cost: O(1)

(3)

and there is an update to its parameter
{s.strength: s in this.signals}:

this.strength = v

class: Signal, method: setStrength
parameters written: {this.strength}
cost: O(1)

(4)

To determine whether a particular update is an update to
a given parameter of a given query, a points-to or alias anal-
ysis is needed to detect whether the variable or object field
being updated can be aliased with a variable or object field
that the parameter represents. Any points-to or alias analy-
sis can be used, provided it is modified to treat sets specially,
following the approach for Java collections in [25]. In this
approach, membership information is encoded as aliasing
relationships involving the (imaginary) field members intro-
duced above. In particular, for analyses based on points-to
graphs, the fact that a node n represents an object that may
be a member of a set represented by node ns is encoded as
the fact that ns.members may alias n, in other words, the

points-to graph contains an edge ns
members
−→ n; special transfer

functions based on this encoding are used for set operations.
For a library operation v0.m(v1, ..., vk), information about

which parts of its arguments are updated should be given.
We assume that it is a set write(v0.m(v1, . . . , vk)) of param-
eters of the form ref . For example, for operations on sets,
this information is given in the write column of the second
table in Section 2.

An assignment to a variable, v, is an update to a read
parameter p if p is v. An assignment to a field, ref .f , is
an update to a read parameter p if p has the form ref ′.f
or {ref ′.f : v1 in s1, . . . , vk in sk| eb}, and ref may alias
ref ′. A call to a library operation, e0.m(e1, . . . , ek), is an
update to a read parameter ref ′.f if there exists ref .f in
write(v0.m(v1, . . . , vk)) such that ref [v0 7→ e0, . . . , vk 7→ ek]
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may alias ref ′. For simplicity, we assume here that e0, . . . , ek

are variables; this can be achieved by introducing local vari-
ables.

Consider expensive computation (2) in the running exam-
ple. Let thisa and thisf denote the this variables in meth-
ods addSignal and findStrongSignals, respectively. The
update thisa.signals.add(signal) is an update to the read
parameter thisf.signals.members of (2), because v0.members
is in write(v0.add(v1)), and v0[v0 7→ thisa.signals] may
alias thisf.signals, assuming that thisa and thisf may
be aliased, i.e., that the elided part of the program in Fig-
ure 2 may call addSignal and findStrongSignals on the
same instance of Protocol.

The analysis is correct in that all possible updates to a
parameter of an expensive computation are identified. Its
precision depends on the precision of the alias analysis. Im-
precision may cause the incrementalization transformations
to insert incremental maintenance code at updates where
it is not needed. As part of the experiments described in
Section 6, we found that Steensgaard’s analysis [25] leads to
some spurious updates, while Andersen’s analysis [25] and
Choi et al.’s analysis [10] are sufficiently precise to avoid
spurious updates in the examples we considered.

4. TRANSFORMATION

We describe (1) transformations, expressed as incremen-
talization rules, that maintain a single invariant, i.e., the
result of a single expensive query, under all updates to its
parameters, (2) incrementalization rules for basic set op-
erations and building a library of rules, and (3) handling
multiple invariants.

4.1 Maintaining a single invariant
Consider an expensive query. We must decide (1) where

to store the query result and (2) how to maintain the result
at all updates to its parameters. Sometimes, maintaining
a result requires maintaining additional results at the same
time. Systematic methods for determining such additional
results are outside the scope of this paper, but they have
been studied for recursive functions [29, 30] and aggregate
array computations [28], and we are currently developing
methods for sets and objects, as summarized in Section 4.2.
For these additional results, we must also answer the two
questions above.

Part of the answer depends on whether the query and the
updates are located across different methods and classes.
There are three cases: (i) not all in the same class; (ii) all
in the same class but not all in the same method; (iii) all in
the same method of a class.

For storing the query result and additional results, in cases
(i) and (ii), fresh fields are introduced in the class that con-
tains the query; in case (iii), fresh variables in the same
method as the query may be used. For ease of presenta-
tion, we always use r (for result) to denote the fresh field or
variable for the query result.

For maintaining the query result and additional results at
all updates, case (i) needs more coordination than cases (ii)
and (iii). In all cases, the transformations are specified as

incrementalization rules of the form:

inv r = query

(at update

if condition

de (variable |field )∗

(in C (field |method )+)∗

do before maint1
after maint2)

∗

(5)

where query and update are patterns for matching queries
and updates, respectively, that are identified as in Section 3;
condition is a test that involves information about query

and update ; variable , field , and method are declarations; C
is the name of a class; and maint1 and maint2 are sequences
of statements.

We denote the containing class and method, parameters
read or written, and cost and frequency as Cq, mq, read q,
cost q, and freqq , respectively, for query , and Cu, mu, writeu,
costu, and frequ, respectively, for update . We use mcostu to
denote the sum of the costs of maint1 and maint2 at update .
An incrementalization rule applies if a query matches query ,
and every update to the parameters of the query matches
at least one update and the corresponding condition holds,
including the cost condition below; transformations for all
matched updates must be applied together. Assuming the
meta-variables in a rule, of form (5), have been instantiated
for a specific query and for all updates to the query, the
semantics of applying the rule is:

1. declare variable r in mq, if Cu = Cq and mu = mq for
all update ’s; declare field r in Cq, otherwise;

2. replace each occurrence of query in Cq that has the
same set of parameters with r, and

3. maintain r = query incrementally as follows:
at each update

if condition holds and
if mcostu ≤ costu or

P

u where mcostu>costu
mcostu × frequ < costq × freqq

then
• declare each variable in mq, if Cu = Cq and mu =

mq for all updates; declare field in Cq, otherwise;
• declare each field or method in class C;
• insert maint1 before update , and maint2 after update .

Condition and declaration clauses are optional. We assume
that the variable, field, and method names in the declara-
tions are not used in the given program; otherwise, fresh
names can always be introduced for them. A declaration
clause has no effect if the variable, field, or method to be
added is already added by the same rule, since multiple
updates may need to add the same declarations. For suc-
cinctness, a condition or declaration that is common for
all updates in a rule may be hoisted above all updates. In
maint1 and maint2, a fresh meta-variable denotes a fresh
temporary local variable. One of maint1 and maint2 to-
gether with before or after may be omitted; when a before
or after is omitted, the maintenance code may be inserted
in either position.

A common condition is that Cu = Cq, so we include it by
default if an at-clause does not explicitly specify other con-
ditions on the containing classes. To facilitate cost consid-
eration, we show costs of queries, updates, and maintenance
to the side of each rule.
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For example, the following rule maintains s.size() under
s = new set(), s.add(x), and s.remove(x); by default, it
applies when the query and all updates are in the same class:

inv r = s.size() O(|s|)

at s = new set() O(1)
do r = 0 O(1)

at s.add(x) O(1)
do before

if not s.contains(x)
r = r + 1

O(1)

at s.remove(x) O(1)
do before

if s.contains(x)
r = r − 1

O(1)

(6)

For the running example, if there were expensive queries
to return the size of the set of signals or the set of strong
signals, then using the above rule, the sizes would be main-
tained incrementally at the updates.

4.2 Library of incrementalization rules
We describe important rules for maintaining set compre-

hension and aggregation and discuss libraries of incremen-
talization rules.

A rule for set comprehension. The rule in Figure 5
maintains a basic form of set comprehension under set ini-
tialization, element addition, element removal, and element
modification. For element modification, the transformation
for Cq 6= Cu is shown; the transformation for Cq = Cu is
simpler and not presented.

The first three at-clauses are for updates in the same class
as the query and are easy: for r = {v in s|e}, when s is
emptied, r is too; when an element x is added to s, the
condition e is tested for x and, if it holds, x is added to r;
similarly for element removal.

Consider the fourth at-clause, for element modification.
The applicability condition is that s is a field of class Cq ,
elements of s are from class Cu, Cu 6= Cq, a field f of the
elements is used in the query, and the update updates the
field f of this instance of Cu. The transformations for in-
crementally maintaining r are as follows. First, in class Cu,
a field cqs is declared to keep a set of all Cq objects whose
s field contains the Cu object, and a method takeCq is de-
fined for adding a Cq object to the set cqs; the last at-clause
inserts code that calls takeCq when an element is added to
s. Then, in class Cq, a method updateCu is defined for up-
dating r given a Cu object x: if x is not in s, do nothing;
otherwise, if x is in r but does not satisfy the condition e,
remove x from r, and if x is not in r but satisfies e, add x to
r. Finally, code is inserted after this element modification:
for each object cq in cqs, updateCu is called on cq with this
Cu object as argument.

The new methods takeCq and updateCu and field cqs

work together as follows. Recall that the goal is to incre-
mentally maintain in a Cq object the result of a query over
a set of Cu objects when a Cu object is updated. First,
when a Cu object is added to the set queried by the Cq ob-
ject, method takeCq of the Cu object is called to add the
Cq object to cqs, the set of Cq objects that query over sets
containing the Cu object. Then, when the Cu object is up-

inv r = {v in s|e} O(|s| × cost(e))
if vars(e) ⊆ {v, this}

at s = new set() O(1)
do r = new set() O(1)

at s.add(x) O(1)
do if e[v 7→ x]

r.add(x) O(cost (e))

at s.remove(x) O(1)
do if e[v 7→ x]

r.remove(x) O(cost (e))

at update O(cost (update))
if s is a field of Cq, type(s) = set(Cu), Cu 6= Cq,

{v.f : v in s} ∈ read q , and writeu = {this.f}
de in Cu

cqs : set(Cq) //cq is Cq with lower case initial
takeCq(cq) : cqs.add(cq)
in Cq

updateCu(x) :
if s.contains(x)
if r.contains(x)
if not e[v 7→ x]

r.remove(x)
else

if e[v 7→ x]
r.add(x)

do after
for cq in cqs

cq .updateCu(this) O(cost (e) × |cqs|)

at s.add(x) O(1)
if type(s) = set(C), C 6= Cq, and

there is an update to a field in C
do x.takeCq(this) O(1)

Figure 5: Rule for basic set comprehension.

dated, it calls method updateCu for all Cq objects in cqs to
update the query results in those objects.

For the running example, using the above rule, the in-
crementalized implementation in Figure 3 is obtained. The
query (2) in Protocol can be incrementally maintained at
updates (3) in Protocol and (4) in Signal. Incremental
maintenance takes O(|cqs|) time at each update, which is
O(1) if there are only a few protocol instances, and the query
time is reduced from O(|this.signals|) to O(1).

Rules for aggregations. An aggregation computes a quan-
tity—such as size, sum, average, or minimum—over a set.
We describe how these quantities may be maintained incre-
mentally with respect to element addition or removal.

Size is easily maintained as in rule (6). Sum can be main-
tained similarly. The rule for average may declare and main-
tain additional results—namely sum and count—as well as
the average. For a query that returns the minimum of a
set, and updates that include element addition and dele-
tion, incremental maintenance may use a black-red tree. It
is easy to write an incrementalization rule that automat-
ically declares, maintains, and uses a black-red tree when
cost analysis shows that this is beneficial.

Library. A library of incrementalization rules can be built
and reused. These rules would capture important algorithm
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design and program development knowledge that is used
repeatedly in constructing complex software systems. For
example, the library may include rules for arithmetic opera-
tions, as used in strength reduction [11], rules for operations
on bitwise data, as needed for hardware design [21], rules for
operations on relations, as performed in databases, and rules
for operations on state machines, for embedded applications.

When dealing with a library of rules, two important ques-
tions emerge. Where do the rules come from, and which
rule do we apply when more than one rule can be used on
an expensive query? We answer the first question here, and
the second question in Section 4.3.

We have developed the rules in this paper in an ad-hoc
manner, by analyzing the possible updates that can effect
specific classes of expensive computations. This approach
proves surprisingly effective in practice. We believe that
one reason for this is that many of the expensive compu-
tations found in programs are not overly complex. These
are computations that are currently being incrementalized
by hand. By creating rules, we can automate this procedure
and save the programmer a significant amount of effort.

As expensive computations get more complex, the situa-
tion gets more complicated. Developing, by hand, an incre-
mentalization rule for a complex expensive computation is
difficult. This is true both when developing a general rule
that can be used with our system, and when trying to fig-
ure out how the expensive computation can be maintained
by hand, as is the case today. While many computations
can be incrementalized using a few rules, and new rules can
be created to handle additional computations, we recognize
that creating rules to handle complex computations may be
a difficult and potentially error-prone process.

To address this, we are developing methods that compute
incrementalization rules for entire classes of expensive com-
putations. Such a method will take an expensive computa-
tion, and return a rule that can incrementalize that compu-
tation, and other similar computations. We have developed
such a method for comprehensions. These comprehensions
may contain any number of set iterations where a condition
may involve multiple iteration variables, in contrast to the
rule in Figure 5, which supports a single level of iteration;
note that the rules in Figure 5 can be applied repeatedly to
multiple iterations but each condition may involve only one
iteration variable at a time. From the structure of the com-
putation, our method derives additional values to maintain
and code that executes when any field or set involved in the
comprehension is updated.

We have also developed general methods that can be used
to develop incrementalization rules. These methods allow
for the incrementalization of recursive functions [29, 30] and
aggregate array computations over loops [28]. Integrating
these methods will increase the size of the rule library, and
hence the set of programs that can be improved.

4.3 Multiple invariants and auxiliary
optimizations

While an incrementalization rule specifies how to maintain
the result of an individual query with respect to updates to
its parameters, it is easy to see that the results of multiple
independent queries, i.e., queries where the parameters of
one query do not depend on the results of other queries,
can be maintained simply by applying all the rules, whether
simultaneously or one at a time in any order.

To maintain the results of multiple queries that are not in-
dependent, i.e., queries where the parameters of some query
depends on the results of other queries, chains of depen-
dencies among the queries must be followed. Dependencies
are acyclic, because they are between two nested compu-
tations or two sequential computations. Incrementalization
first maintains results of queries that do not depend on re-
sults of other queries, with respect to updates to its pa-
rameters, and then maintains queries that only depend on
queries whose results have already been updated, with re-
spect to updates to those results. This is like the chain rule
in calculus [38].

In general, there may be multiple rules that apply to a
query and all updates to its parameters. Since all the appli-
cation conditions including cost considerations are specified
explicitly in rules, systematic methods and automated tools
should be developed to support the selection of the rule or
rules that lead to the best performance. At the lowest level,
this is known as data structure selection [43, 8, 42]. General
methods based on incrementalization rules that work at all
levels are open for further study.

Incrementalization may yield opportunities for additional
optimizations, including specialization and dead code elim-
ination. Specialization uses information in the context of
a computation to simplify conditionals in the result of in-
crementalization. Dead code elimination removes code that
is no longer needed because values computed by such code
are now incrementally maintained. While generally these
optimizations do not improve asymptotic complexity over
incrementalization, they may reduce the running time and
space usage by a constant factor or a constant amount and
reduce the size of the resulting code.

5. DISCUSSION

Correctness, cost, and scalability. The transformations
preserve semantics in the sense that the incrementalized pro-
gram has the same behavior as the original program but
improved performance. The correctness holds not only for
sequential programs, but also for concurrent programs pro-
vided that each incremental maintenance is performed atom-
ically with the corresponding update.

An essential characteristic of our method is the explicit
analysis and use of cost and frequency information to en-
sure performance improvement. While this paper mainly
uses asymptotic cost, the method is general and other cost
models may be used, and time and space trade-off can be
considered.

Since our method analyzes and transforms expensive queries
one at a time, it scales well. As discussed in the next sub-
section, our method may also be applied to components or
incomplete specifications and be used to support incremen-
tal development.

Incremental development. Our method is well suited
for incremental development, because it preserves object ab-
straction in the original specification and allows easy han-
dling of the addition and deletion of queries and updates,
and thus also components, that occur in incremental devel-
opment. A new transformed implementation may inherit
from the previous transformed implementation.

If a query is added, our method simply incrementalizes the
query with respect to all updates to the query parameters. If
an update is added, our method considers all queries whose
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parameters may be changed by this update: if a query can be
maintained incrementally under this update using the same
incrementalization rule used to maintain it under the exist-
ing updates, then we simply add maintenance code for the
new update; otherwise, we try to incrementalize the query
under all the updates including the new one, and use the
result, which is the original implementation if no incremen-
talization rule applies, to replace the old incremental code.
If a query is deleted, all maintenance code for it can be re-
moved. If an update is deleted, we may check applicability
of incrementalization rules that yield more specialized and
more efficient maintenance code.

Note that when incremental developement and reuse of
previous implementations are not of concern, we may gen-
erate more efficient code that cuts through abstractions.

OOP and AOP. Object-oriented programming (OOP) and
aspect-oriented programming (AOP) [23] are widely studied
paradigms for structuring abstractions.

In our method, the initial abstraction is modular and
object-oriented, where classes straightforwardly encapsulate
data and operations, while the incrementalization rules are
aspect-oriented, where each rule is an aspect, ensuring that
the invariant for the result of an expensive computation is
maintained at all updates to its parameters. This natural
integration of OOP and AOP is fundamental in resolving the
conflict between clarity and efficiency. This invariant-driven
view of AOP is also what drives the generative approach
to AOP [46]. An important open problem is a good lan-
guage for incrementalization rules that facilitates re-use of
rules; existing languages for AOP are mainly for application
programming.

Additional optimizations. The transformations in Sec-
tion 4 maintain query results eagerly at every update to the
query parameters. In some cases, on-demand computation
(also called lazy computation) may be more efficient. That
is, changes are collected at updates, and maintenance of the
invariant is performed just before the query. Our method
can be extended to introduce on-demand computation as
appropriate based on cost analysis.

As mentioned above, our transformations preserve seman-
tics also for concurrent programs with the stated atomicity
condition. Ensuring atomicity requires synchronization. Us-
ing synchronization uniformly at all updates makes verifica-
tion of correctness easier but can be costly. Analyses and
transformations that eliminate unnecessary synchronization
would be an essential part of a systematic method for de-
veloping correct and efficient concurrent programs.

6. APPLICATIONS AND EXPERIMENTS

To demonstrate the effectiveness of our analyses and trans-
formation techniques, we applied them to a number of prob-
lems in various domains of interest. For each problem, we
first wrote a straightforward program that solves it. We
did not take efficiency into account when writing these pro-
grams, but instead strove to write a clear and understand-
able program that could handle the task.

We then used a system we developed to automatically
apply incrementalization rules to the straightforward code.
This system, named InvTS (Invariant-driven Transforma-
tion System), consists of over 5000 lines of Python. It takes
as input a Python program, and produces as output an opti-

mized version of that program after applying the incremen-
talization rules. For both the straightforward and incre-
mentalized programs, we report the number of non-empty,
non-comment, non-import lines in it.

We ran each program on input data to evaluate how its
performance was improved by our method. As our problems
are chosen from a wide variety of domains, there is no one
way to create input data for all of them, so the input is
described below with each problem. For each problem, we
created a program that lets us vary the generated data in a
way that is governed by one or more independent variables.
In this way we can generate a number of inputs, for each
of which we need to determine the running time of each
program. For a particular input and program, we compute
the running time by running the program repeatedly on the
data until the standard deviation of the set of running times
is less than 10 percent of the mean of the set of running
times. For each problem, we graph the running times of the
straightforward and incrementalized programs, and analyze
how the running time has changed asymptotically.

Our current incrementalization rule library contains six
rules, of which five are used in the examples given below. In
addition to the rule in Figure 5, we developed other rules
to handle expensive computations that arise in our test pro-
grams. We have rules that handle comprehensions with up
to two iterations, and with up to two free variables. Other
rules allow us to incrementalize comprehensions over the
contents of dictionaries, rather than sets.

Our test programs are single-threaded, and were run un-
der Windows XP SP2 on a dual-processor Athlon XP 2.8Ghz
with 2 GB of memory, of which around 1.6 was free when
running our programs. Our example programs, written in
Python, were run under ActivePython 2.4 Build 244. This
system was also used to run the incrementalizer, which took
between 2 and 18 seconds per example.

All of the programs that our method has been applied to
were written by us. Some may object to this, preferring that
our method be applied to open source programs written by
others. But widely used open-source programs were gener-
ally written with efficiency in mind, and the programmers
generally incrementalized the repeated expensive computa-
tions by hand. Our method would not improve the perfor-
mance of such programs. Instead, our method would al-
low programmers to write simpler, more readable, and more
maintainable programs, and leave incrementalization to au-
tomated tools.

Protocol. Our first example is the running example used
throughout this paper. When translated to Python, the
straightforward version consists of 14 lines of code. The
automatic incrementalization system detected the single ex-
pensive query in this code, and incrementalized it. The re-
sulting Python code is 42 lines long. In this example, 13
lines made it through intact, 1 line was changed, and 29
lines of code were added. In a more complete application,
it’s possible that more updates to the signal strength and
set of signals could be used. Since our method finds and
generates code for each update, even more code would be
generated.

To show the effectiveness of our system, we measured the
performance of both programs. Figure 6 shows the results of
a test in which we performed ten million findStrongSignals

queries over a Protocol object containing a varying num-
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Figure 6: Running time of protocol. In all figures,
the error bars denote a 95% confidence interval,
while the lines are curves fit to the data points.

ber of Signal objects. As one can see from Figure 6, the
original straightforward program is linear in the number of
signals present, while the incrementalized version of the pro-
gram takes constant time, regardless of the number of signals
found. This is as expected, and shows the benefits of incre-
mentalization when the number of queries is much larger
than the number of updates. Although we do not present it
here, we did compare the running time of the program with
a varying number of queries. As expected, the running time
scales linearly with the number of queries performed, with
the non-incrementalized version having an increasing slope
as the number of Signal objects increases.

Join. Our second example is a join operation, which can be
written as a comprehension of the form:

{[x,y]: x in s, y in t | f(x)=g(y)}

Converting this to Python and adding some support code
gives a program of 10 lines in length, corresponding to the
following high-level program:

result = new set()

for x in s

for y in {y in t | f(x)=g(y)}

result.add([x,y])

This program contains a single expensive computation, the
comprehension {y in t | f(x)=g(y)}. When incremental-
ized over updates to the s and t sets, the program expands
to 24 lines in length.

We created two series of test data to evaluate the perfor-
mance of the straightforward and incrementalized versions
of join. In both series, the size of the two input sets was
given as the independent variable N. The series differ in the
size of the output. One series produces output of size N2,
while the other produces no output at all, as would be the
case with fully disjoint input. These two series let us explore
the full limits of possible running times.

Figure 7: Running time of join.

We ran both programs on both series of inputs. Figure 7
shows the running times. The straightforward program is
always quadratic in running time, while the incrementalized
program is quadratic or linear, depending on the size of the
output. Thus, starting with a quadratic specification of join,
we automatically obtained an incrementalized implementa-
tion that runs in time proportional to the size of the input
and output; this is asymptotically optimal [49, 16].

Figure 8: Running time of graph reachability.

Graph reachability. Our next example is graph reacha-
bility. In this problem, we are given a set edges containing
pairs of vertices representing edges in a directed graph, and
a starting vertex source. We compute all vertices reachable
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from the starting vertex. A straightforward implementation
takes 15 lines of Python code, corresponding to the following
high-level program:

reach = new set()

reach.add(source)

while exists y in {y: x in reach, [x,y] in edges

| y not in reach}

reach.add(y)

where exists x in s returns true if s not empty and binds
x to an arbitrary element of s, and returns false otherwise.
Our tool finds two expensive computations that can be incre-
mentalized, and expands the program to 32 lines in length.

To evaluate the benefit of the optimization, we ran our
programs on test data consisting of connected graphs with
numbers E of edges that increase linearly and quadratically
with the number of vertices, V. Figure 8 shows the running
times of the programs on various input sets. The straight-
forward program took O(VE) time to compute all reachable
vertices, which may be cubic or quadratic in the number of
vertices, depending on the number of edges in the graph.
The incrementalized version took O(E) time, saving time
proportional to the number of vertices, making the running
times quadratic and linear, respectively. In all cases, the in-
crementalized program ran faster than the straightforward
one.

Figure 9: Running time of role-based access control.

Role-based access control. Our final example is our most
realistic and complex one, and the one that shows the great-
est improvements in running time. Starting from the spec-
ification in [2], we developed a straightforward high-level
Python specification for Core Role-Based Access Control
(Core RBAC). This high-level specification, consisting of 125
lines of interesting code, contains seven expensive queries
that could be incrementally maintained. When incremen-
talized, the code more than quadrupled in size to 610 lines
of lower-level Python code.

We measured the performance on input data that simu-
lates a user access pattern. This pattern consists of a session

creation, ten random access checks, and a session deletion
operation. Each run consists of 100,000 repeats of this pat-
tern, applied to a database containing a varying number
of roles. Figure 9 shows the results. The straightforward
code takes time proportional to the number of roles in the
database, while the incrementalized program takes a con-
stant amount of time. This improvement in asymptotic be-
havior leads to a large practical speedup. With a database
containing 1,400 roles, the straightforward version takes over
5 seconds, while its incrementalized counterpart takes less
than 0.4 seconds.

Now, realistic implementations of Core RBAC do not take
seconds to process a million access checks. These implemen-
tations are incrementalized by their creators. Our method
ensures that the incrementalization process is done explicitly
and correctly, and saves the programmer time by reducing
the amount of code that must be written by a factor of four.
Furthermore, the code being saved is often the most tedious
and complex in the program. In the RBAC example, over
four hundred lines of code are added to incrementalize a
mere seven expensive computations.

7. RELATED WORK AND CONCLUSION
There is a vast amount of research on object abstraction

in specification and implementation of software. What has
been lacking in this area is the explicit specification and
use of cost models. Adding performance information in ex-
tended interfaces was proposed [12, 4], but no systematic
optimization was developed that uses such information.

There is a large body of work on formal specification and
transformation for program development (e.g., [17, 32, 41,
33]), including in particular methodologies for strengthening
and maintaining invariants (e.g., [18]). Most of these meth-
ods do not consider cost explicitly, and most of them are not
systematic or automatable. The exceptions are a number of
methods based explicitly on making computation incremen-
tal (e.g., [38, 36, 50, 45, 19, 34, 27, 28]), but none of them
addresses the development of object-oriented programs.

In particular, the finite differencing method for incremen-
tally computing set expressions [38, 36] also exploits the
chain rule and is particularly systematic. Together with data
structure selection for implementing sets [37, 8], it has been
used successfully in developing new, efficient algorithms and
implementations for complex analysis problems (e.g., [39,
7]). Nevertheless, it only transforms straight-line code that
has no procedural abstraction, let alone object abstraction.

Our incrementalization across object abstraction unifies
and extends previous incrementalization methods into a sys-
tematic method for developing efficient object-oriented pro-
grams. Strength reduction, finite differencing, and other
transformations for incremental computation can all be ex-
pressed as incrementalization rules. The method is scalable,
since it transforms one query at a time, and is well suited
for incremental development.

There is a large amount of work on transformation and op-
timization of object-oriented programs, e.g., [13, 5, 48, 15,
44, 3]. None of it performs incremental maintenance of in-
variants that is essential for transforming clear and modular
but inefficient implementations into efficient but sophisti-
cated implementations.

In conclusion, a systematic method for incrementalization
across object abstraction is important in resolving the con-
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flict between clarity and efficiency. Future work is needed
on improved techniques for analyzing dependencies and an-
alyzing costs and tradeoffs, suitable languages for specifying
incrementalization rules, and further optimizations for on-
demand and concurrent computations. Finally, the dual or
reverse problem of incrementalization—given scattered in-
cremental updates in a sophisticated implementation, de-
termine the high-level query, i.e., the invariant—is very im-
portant for understanding legacy software.
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